
ISRAEL JOURNAL OF MATHEMATICS 86 (1994), 349-371 

ON THE NUMBER OF NON-ISOMORPHIC SUBGRAPHS 

BY 

S.  SHELAH* 

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel 

AND 

L .  S O U K U P * *  

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary 

ABSTRACT 

Let K: be  the  family of g raphs  on Wl wi thout  cliques or i ndependen t  subse t s  

of size Wl. We prove t ha t  

(a) it is consis tent  with CH t h a t  every G E K: has  2 wl m a n y  pairwise 

non- isomorphic  subgraphs ,  

(b) t he  following proposi t ion holds in L: (*) there  is a G E/C such that 
for each partition (A, B) of  wl either G ~-- G[A] or G ~- G[B], 

(c) t he  failure of (*) is consis tent  wi th  ZFC. 

1. In troduct ion  

We assume only basic knowledge of set theory - -  simple combinatorics for section 

2, believing in L ~ (~+ defined below for section 3, and finite support  i terated 

forcing for section 4. 

Answering a question of R. Jamison, H. A. Kierstead and P. J. Nyikos [5] 

proved tha t  if an n-uniform hypergraph G = (V, E) is isomorphic to each of its 

induced subgraphs of cardinality IVI, then G must be either empty or complete. 

They raised several new problems. Some of them will be investigated in this 

paper. To present them we need to introduce some notions. 
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An infinite graph G = IV, E)is called non - t r i v i a l  iff G contains no clique or 

independent subset of size IV]. Denote the class of all non-trivial graphs on wl 

by /C. Let I(G) be the set of all isomorphism classes of induced subgraphs of 

G = IV, E) with size IVI. 

H. A. Kierstead and P. J. Nyikos proved that tI(G)[ > w for each G E/C and 

asked whether I I (G)I  > 2 ~ o r  I I (G)I  ___ 2 ~1 h o l d  o r  n o t .  In [3] it was shown 

that (i) II(G)I ___ 2 ~ for each G E /C, (ii) under <>+ there exists a G E /C with 

II(G)I = a)l. In section 2 we show that if ZFC is consistent, then so is ZFC + 

CH + "II(G)I = 2 ~1 for  each  G E/C' .  Given any G C/C we will investigate its 

partition tree. Applying the weak ~> principle of Devlin and Shelah [2] we show 

that  if this partition tree is a special Aronszajn tree, then II(G)I > ~vl. This 

result completes the investigation of problem 2 of [5] for w1. 

Consider a graph G = IV, E). We say that G is a lm o s t  s m o o t h  if it is isomor- 

phic to G[W] whenever W C V with I V \ W I < IVI. The graph G is called quas i  

s m o o t h  iff it is isomorphic either to G[W] or to G[V ". W] whenever W C V. 

H. A. Kierstead and P. J. Nyikos asked (problem 3) whether an almost smooth, 

non-trivial graph can exist. In [3] various models of ZFC were constructed which 

contain such graphs on Wl. It was also shown that the existence of a non-trivial, 

quasi smooth graph on wl is consistent with ZFC. But in that model CH failed. 

In section 3 we prove that <>+, and so V=L, too, implies the existence of such a 

graph. 

In section 4 we construct a model of ZFC in which there is no quasi-smooth 

G C /C. Our main idea is that given a G C K: we try to construct a partit ion 

(A0, A1) of wl which is so bad that not only G ~ G[Ai] in the ground model but 

certain simple generic extensions can not add such isomorphisms to the ground 

model. We divide the class K: into three subclasses and develop different methods 

to carry out our plan. 

The question whether the existence of an almost-smooth G E/C can be proved 

in ZFC is still open. 

We use the standard set-theoretical notation throughout, cf [4]. Given a graph 

G = (V,E)we write V(G) = Y and E(G) = E. If H C V(G) we define G[H] 

to be (H, E(G) (1 [g]2). Given x • V take G(x) = {y • V: {x, y} • E}.  If G 

and H are graphs we write G ~ H to mean that  G and H are isomorphic. If 

f: V(G) --~ V(H) is a function we denote by f :  G --- H the fact that f is an 

isomorphism between G and H. 
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Given a set X let Bijp(X) be the set of all bijections between subsets of X.  If 

G = (V, E>is a graph take 

Isop(G) = {f  E nijp(Y): f :  G[dom(f)]  ~ G[ran(f) ]} .  

We denote by Fin(X, Y) the set of all functions mapping a finite subset of X to 

Y. 

Given a poset P and p, q E P we write p[[ pq to mean that  p and q are compatible 

in P. 

The axiom 0 + claims that  there is a sequence (S~: a < wl } of countable 

sets such that for each X C wl we have a closed unbounded C c ~1 satisfying 

X Fl ~, E S~ and C N ~, E S~ for each z, E C. 

We denote by TC(x)  the transitive closure of a set x. If ~ is a cardinal take 

H~ = {x: ITC(x)l < ~) and 7-/~ = (H~, E>. 

Let us denote by :D~, the club filter on Cal. 

2. I (G)  c a n  b e  a l w a y s  l a rge  

THEOREM 2.1: Assume that GCH holds and every Aronszajn-tree is special. 

Then II(G)[ = 2 ~1 for each G E IC. 

Remark: S. Shelah proved, [7, chapter V. §6,7], that  the assumption of Theorem 

2.1 is consistent with ZFC. I 

During the proof we will apply the following definitions and lemmas. 

LEMMA 2.2: Assume that G E IC, A E [wl] ~1 and [{G(x) N A: x E wl[ = Wl. 

Then I I (G)I  = 2 ~ ' .  

Proo~ See [3, theorem 2.1 and lemma 2.13]. I 

Definition 2.3: Consider a graph G = (¢vl, E). 

1. For each y E wl let us define the ordinal "y~ E wl and the sequence 

( ~ :  "/_< 7~) as follows: put ~ = 0 and if ( ~ :  a < 7) is defined, then 

take 

V V ~, = min{~: Va < 7 ~ > ~ and ( { ~ , ~ }  E E iff { ~ , u }  E E)} .  

If ~ = ~,, then we put 7~ = "Y- 

2. Given ~,, # E o;1 write ~, -K C # iff (~ = (.~ for each "r _< "~,. 

3. Take T c = (~1, .<G). TC is called the p a r t i t i o n  t r e e  o f  G. I 
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LEMMA 2.4: I f  G = (Wl, E)  6 IC with II(G)[ < 2 ~' , then T a is an Aronszajn 

tree. 

Proof." By the construction of T a ,  if v, # 6 Wl, u < # and G(v) N v = G(#) M v, 

then v -4 a #. So the levels of T a are countable by Lemma 2.2. On the other hand, 

T a does not contain Wl-branches, because the branches are prehomogeneous 

subsets and G is non-trivial. I 

Definition 2.5: 

1. Let F: (2~) <°~ -* 2 and A C Wl. We say that  a funct iong:  wl --* 2 is 

an A - d i a m o n d  for  F iff, for any h e (2~) ~1 , {a • A: F(h[a)  = g(a ) )  is a 

s tat ionary subset of wx. 

2. A C wl is called a sma l l  s u b s e t  o f  Wl iff for some F: (2°') < ~  ~ 2 no 

function is an A-diamond for F.  

3. f f  = {A C wi: A is a small subset of 021}. ] 

In [2] the following was proved: 

THEOREM 2.6: I f  2 ~ < 2 ~ ,  then :7 is a countably complete, proper, normal 

ideal on wi. 

After this preparation we are ready to prove Theorem 2.1. 

Proof'. Assume that  G = (wl, E)  • 1C with [I(G)[ < 2 ~1 and a contradiction will 

be derived. 

Since 2 ~ = w2, we can fix a sequence {Gv: v < wl} of graphs on wl such that  

for each Y • [wl] ~ there is a u < Wl with G[Y] ~ G~. Write Gv = (wi, E~). 

Consider the Aronszajn-tree T a = (wi, .~a). Since every Aronszajn-tree is 

special and 2: is a countably complete ideal on Wl, there is an antichain S in T a 

with S ~ ft.  Take 

A = • • 

Now property ( , )  below holds: 

( . )  Va • S Yp • ( S U A )  \ a  + 15a • A M a  ({a , a}  • E iff {p ,a}  ¢ E).  

Indeed, if for each a • A M a we had {a, a}  • E iff {p, a}  • E,  then a .~G p 

would hold by the construction of T e.  

Let v • wl, a • S, T C S N a and f :  G[(A N a) U T] ~ G~ be an embedding. 

Define F(v,  a, T, f )  • 2 as follows: 

f ( u , a , T , ] ) = l  i f f 3 x • G ~ ( V a • d M a )  ( { x , f ( a ) } E E ~  i f f { a , a } • E ) .  
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In case wa = a, under suitable encoding, F can be viewed as a function from 

(2~) <~  to 2. 

Since S ~ ,7, there is a g E 2 ~1 such that for every v E wl = 2 ~, T C S and 

f: G[A u T] ~- G~, the set 

ST = {a E S: g(a)= F(u,a, TMa, f[a)}  

is stationary. Take T = {a E S: g(a) = 0}. Choose an ordinal v < Wl and a 

function ] with f :  G[A U T] ~- G~. For each a < wl with a = wa it follows, by 

( .) ,  that  

a c T  i f f 3 x E w l V a E S n a  ( { x , f ( a ) } E E ~  i f f { a , a } E E ) .  

Thus g(a) = 0 iff F(v,a, T n a ,  f [ a ) =  1, for each a E S, that is, ST = 0 ,  which 

is a contradiction. I 

3. A q u a s i - s m o o t h  g r a p h  u n d e r  Q+ 

THEOREM 3.1: I f  ~ + holds, then there exists a non-trivial, quasi-smooth graph 

o n  ~d 1 . 

Proo~ Given a set X,  ,4 C P (X)  and 9 r C Bijp(X) take 

CI(A, ~') = N {B: B D .4 and VB0, B1 e • Vf e .T" VY e IX] <w 

{B0 u BI, f"Bo,  BoAY}  c B}. 

We say that A is Jr-closed if A = CI(A, ~'). Given A, 7)CP(X) ,  we say that  l)  

is uncovered by A if ID\A] = w for each A E A and D E 7P. 

LEMMA 3.2: Assume that .TcBijv(X ) is a countable set, A °, A I c p ( x )  are 

countable, Jr-closed families. If:DcP( X ) is a countable family which is uncovered 

by A ° U A 1, then there is a partition (Bo, B1) of X such that l) is uncovered by 

Cl(A i U {Bi},  ~') for i < 2. 

Proof: We can assume that ~" is closed under composition. Fix an enumeration 

{(D,~, kn, F,~, in, An): n E w} o f / )  x w x 9 r<~ x {(i, m): i E 2, m E A'}.  By in- 

duction on n, we will pick points xn E X and will define finite sets, B ° and B~, 
i i such that  B ° n B~ = 0 and BncB,~+~. 
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Assume that we have done it for n - 1. Write Fn = ( fo , . . - , f /c -1) .  

B~-I  = B°_ l  U B~_ 1 and 

B: = B._, u U {f;'Bn_~: j < k }  

Pick an arbitrary point xn • D,~ \ (A,~ U Bg) .  Put  

B~," i, = B n _  1 

and 

Isr. J. Math .  

Take 

Bl-i, 121-i,, n = ~,,-1 U {x,~} U {fj- l (xn):  j < k}.  

Next choose a partition ( B  °, B 1) of X with B ~ D U{B~,: n < w} for i < 2. We 

claim that  it works. Indeed, a typical element of Cl(A i U {Bi}, ~)  has the form 

C=AuU{fi'B~:j<k}, 

where A E ,4, k < w and f o , . . . ,  f/c-1 E 9 v. So, if D E T), then 

D \ C  D {xn: D,, = D, An = A, in = i and F,, = ( f o , . . . ,  f/c--l)} 

because xn ~ A and f ; l (x , , )  E B 1-~ by the constuction. I 

Consider a sequence F = ( fo , . . - ,  f,~-l)- Given a family .TcBijp(X) we say 

that F is an .T-term provided fl = f or fl = f - 1  for some f E .T, for each i < n. 

We denote the function foO- . .ofn_l  by F as well. We will assume that the empty 

term denotes the identity function on X. If I < n take (0F  = ( f o , . . . ,  fz-1) and 

F(0 = (fz , - - - , f ,~- l ) -  Let 

S u b ( F )  = { ( f ~ o , . . . ,  f ~ , - , ) :  l _< n,  i0 < . . .  < i ,_1 < n}. 

Given f E .T and x, y E X with x ~ dom(f)  and y ~ ran( f )  let F S'~'y be the term 

that we obtain replacing each occurrence of f and of f - 1  in F with f U {(x, y)} 

and with f - 1  U {(y, x)}, respectively. 

LEMMA 3.3: Assume that 3cCBijp(X), A c P ( X )  is F-dosed, Fo, . . . ,  Fn-1 are 

.T-terms, zo, . . . ,  z,,-1 E X,  Ao, . . . ,  An-1 E .4 such that for each i < n 

(*) zi ~ U {F"Ai: F E Sub(F/)}. 
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If  f E :F, x E X"-dom(f) ,  Y E [ X \ r a n ( f ) ]  ~ with [A n Y[ < w for each A E A, 

then there are infinitely many y E Y such that (.) remains true when replacing 

I with f u  {<x,v>), that is, 

z, 

[or each i < n. 

Proo['. It is enough to prove it for n = 1. Write F = ( / o . . . , / k - l ) ,  A = Ao, 

z = z0. Take 

YF, A = {Y E Y: (**) holds for y}. 

Now we prove the lemma by induction on k. 

If k = 0, then YF, A = Y".A.  Suppose we know the lemma for k - 1. Using the 

induction hypothesis we can assume that (t) below holds: 

(t) Y = N { Y G , F ; [ ) A : I < - n ,  GESub( (oFI 'x 'u ) ,G # FS'x'v} • 

Assume that [YF, A[ < W and a contradiction will be derived. 

First let us remark that either fk-1 = f or fk-1 = f - 1  by (t). 

CASE 1: fk-1 = f - 1 .  Then YF, A D Y \ A  by (t), so we are done. 

CASE 2: fk -1  = f -  In this case x E A and for all but finitely many y E Y we 

have z = FS'~'V(x). Then for each y, y' E Y take 

l(y,y') = max {l < n: Vi < l F~i~'V(x ) = F~i~'V'(x)}. 

By Ramsey's theorem, we can assume that l (y,y ~) = l whenever y, y~ E Y. 
X ! x ' 12f,:~,y{,.,..~ f ,  ,y  Clearly 1 < n. Then F~i~'V(x ) # F~i 'y (x) but . ( ,_ l )~ j  = F0_I ) (x ) ,  so ~fl = 

f - 1  and f'x'Y Fil_D(x ) = x for each y E Y. Thus z = q_l)Ff,~,V(x) for each y E Y, 

which contradicts (t) because x E A. 

The lemma is proved. I 

We are ready to construct our desired graph. 

First fix a sequence (Ms: a < Wl) of countable, elementary submodels of some 

HA with (Mr: 7 < a /  E Ms for each a < wl, where A is a large enough regular 

cardinal. 

Then choose a (~-sequence (S~: a < Wl) E Mo for the uncountable subsets of 

wl, that is ,  {a < Wl: X M a = S~} ¢ NS(wl)  whenever X E [wl] ~1. We can also 

assume that S~ is cofinal in a for each limit a. 
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We will define, by induction on a, 

1. graphs Gs = (wa, Es) with G~ = G~[w~] for/3 < a, 

2. countable sets ~'~ • Isop(G~), 

satisfying the induction hypotheses (I)-(II) below: 

(I) {S~7:7 _< a} is uncovered by Is U Js where 

I .  = Cl({a(~) n ~: ~ • ~ } ,  U ~ )  

and 

. 

2. 

3. 

4. 

5. 

t h e n  

Js  = Cl({u\G(v):  u • wa},  U ~~). 

To formulate (II) we need the following definition. 

Definition 3.4: Assume that a = /3  + 1 and Y c w a .  We say that Y is large if 

Vn • ~, v ((£, ~>: i < ~), Vh 

if  

Vi < n 3c~i < ~ fi • ~'s,, 

Vi < n wai _< x~ < wf~, 

Vi < n ran( f i )cY,  

V i ¢  j < n ran(fi) M ran(fj)  = 

h • Fin(Y n wf~, 2) and dom(h) M U {ran(f~): i < n} = O, 

3y E Y n [w~, wa) such that 

6. Vi < n Vx e dom(fl) ({y, f~(x)} E Ea iff {xi,x} e Es),  

7. Vz E dom(h) {y, z} E Ea iff h(z) = 1. | 

Take 

(II) If a =/3 + 1, then wa is large. The construction will be carried out in such 

a way that  

(G~:/3 _< a) • Ms and (.T'~: ~ < a) • Ms. 

To start with take Go = (~, 0) and jc = {O}. Assume that the construction is 

done for/3 < a. 

CASE 1: a is limit. We must take Ga = U {G~:/3 < a}. We will define sets 

~,Sr~CIsop(G.) and will take ~-s = ~ u F~. 

Let 

= {f  •Isop(Os) n Ms: 3 (an: n < w) Ca sup {an: n < w} = a, 

f [wa~ E .Ts. and f[wa~: Gs~ ~ Gs.[ran(f)]  for each n E co}. 
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Take 5 c -  = U~<~ ~'~ u 3c~2~, i~- = U~<~ I~ and J~- = U~<~ J~. Clearly 3 r - c M ~  

with ~ ' -  • Ms+I,  so M~+I ~ "[~'-I = w". Obviously both I~- and J~- are 

~'--closed and S = { S ~ : / 3  < a} is uncovered by them. 

From now on we work in M~+I to construct ~-1. For W c w a  write L w  = 

{u < a: W N (wv + w) is large}. 

Take 

W~ = { (W, f )  • (P(wa) M 3,1~) x ( U "~):  n w  is cofinal in a 

and f:  G.r, ~ G~, [W f3 wTy] for some 7S < c~}. 

We want to find functions gWj  D f for (W, f )  • W~ such that 

(A) gW, S: Co ~- G~[W] 

(B) taking 3r~ x = {gWj: ( W , f ) •  W~} the induction hypothesis (I) remains 

true. 

First we prove a lemma: 

LEMMA 3.5: / / (W,  f )  • )/Va, g • Isop(Ga, Ga[W]), g D f ,  [g \ f l  < w, then 

(i) for each x • W \ d o m ( f )  the set 

(y • w: g u {(x, y)} • Isop(G , 

is cofinal in w~. 

(ii) for each y • W \ r a n ( f )  the set 

{x • w: g u {(x, y)} • Is%(G , 

is cofinal in wa. 

Proof'. (i) Define the function h: r an (g ) \ r an ( f )  --~ 2 with h(g(z)) = 1 iff {z, x} • 

E~. Choose/3 • Lw with ran(h)cw/3 and 7y _</3. Since W A (w/3 + w) is large, 

we have a y • W M [w/3, w/3 + w) such that 

1. {y, f (z)} • E~ iff {x, z} • E~ for each z • dom(f) ,  

2. {y ,g(z)}  • .E~ iff h(g(z)) = i for each z • dom(g ) \dom( f ) .  

But this means that 9 u {(x, y)} • Isop(G~, G~[W]). 

(ii) The same proof works using that w/3 + w is large for each/3 < c~. | 

By induction on n, we will pick points zn • wa and will construct families of 

partial automorphisms, {gW.S: (W, f )  • W~} such that gW, y = U {gW, f: n < w} 

will work. 
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During the inductive construction we will speak about ~'a-terms and about 

functions which are represented by them in the n '~ step. 

If F = (ho, . . .hk-1)  is an :Y~-term and n E w take Fin] = jo o . . .  ojk-1 where 

gW, f if hi = gW, f, 
ji  --- (gW, f ) - I  if hi = (gW, f ) - l ,  

hi otherwise. 

First fix an enumeration {((Wn, fn) ,  Un, in) : 1 _< n < w} of 14~ x w a x  2 and 

an enumeration (((Fn,i: i < 1,~),j,~, (An,~: i < In), D n / n  < w) of the quadruples 

((Fo,. . . ,Fk-1) ,j, (Ao , . . . ,Ak-1) ,D)  where k < w, F0 , . . . , Fk -1  are ~'~-terms, 

j E 2, D E S and either j = 0 and Ao , . . . ,  Ak-1 E I~- or j = 1 and Ao , . . . ,  Ak-1 

• J~ - .  

During the inductive construction conditions (i)-(v) below will be satisfied: 

(i) g0 ~,f = S, 
(ii) gW, f • Isop(V~, G~[W]), 

wy  (iii) gW, f D gn'-D IgW'y\fl < w, 

(iv) z ~ ¢ U {  " • ! Fi,qAk,i. F • Sub(Fk,i) for each i < lk and k < n, 

(v) if in = 1, then Un • dom gW~,f~ 

if in = 0, then either Un ~ Wn or un • ran(g W~ 'f~). 

If n = 0, then take gW, y = f .  

If n > 0, then let gWJ ,,w,f whenever (W, f )  ~ (Wn, fn). Assume that 5In--1 

in = O, (W,f )  = (Wn,f , )  and un ¢ dom(gW21'f"). Then, by Lemma 3.5, the set 

w f  Is%(G,~,G,~[W])} is unbounded in wa. Since Y = y • w :  g.-'l u {(~. ,y)} • 
the members of I~- u J~- are bounded in wa, we can apply Lemma 3.3 to pick a 

point y • Y such that taking gW.,,f,, = gW2~S,, U {(un, y}} condition (iv) holds. 

If in = 1 and (W, f )  = (Wn, f , ) ,  then the same argument works. 

Finally pick a point 

zo ¢  o-U Sub(F,,,,), < 

The inductive construction is done. 

Take gW, f =u{gW,  f :n  < w}. By (v), 

g~,s: a ~  ~- a ~ [ w l .  

By (iv), we have 

zk • Dk"U{F~ ' , ,Ak , , : i  < Ik } 

and so it follows that {S~/~:/3 < a} is uncovered by Is U J~. 
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C A S E  2: O~ ---- /~ + 1. 

To start with we fix an enumeration {(((f~, x~): i < nk), hk): k • w} of pairs 

(((fi,xi} : i < n) ,  h} satisfying 3.4.1-5. 

If k • w take 

k B 0 = hk -1 {0} U {f/k(/,): i < nk, v E dom(f/k) and {v,x i } ~ E~} 

and 

k B 1 = h / '  {1} U {f/k(v):i < nk, v C dom(f~) and {v,x i } • EO}. 

(c~,c~), k < w ,  of Applying Lemma 3.2 w-many times we can find partitions o 1 

w13 such that, taking 

I~  = CI((I~ U {C1: k • w}, U 9r~) 

and 
J~- = Cl(( / ,  u {co: k e w},  LI  J:~), 

"r___~ 

the set {S,,v: 7 -</3} is uncovered by I~- u J~-. 

We can assume that i i BkcC k for i < 2 and k < w because B ° E J~ and B~ • I~. 

Take 

E ~ = E / ~ U { { v , w / 3 + n } : v < w / 3 ,  n • w a n d v • B ~  x} 

and 

.T'a _-- 0. 

By the construction of G~ -- (wc~, E~), it follows that wc~ is large, so (II) holds. 

On the other hand 

io- -  

and 

J,~= { X U Y : X  E JJ, Y e[w~]<'°}, 

so {S~-r: 3' < ~} is uncovered by In u J~. Finally S ~  is cofinal in wct but the 

elements of I,~ U J~ are all bounded, so the induction hypothesis (I) also holds. 

The construction is done. Take E = U {E~: a < wa} and G = (wx, E). By (I), 

G is non-trivial. Finally, we must prove that  G is quasi smooth. Consider a set 

YCwa. The following lemma is almost trivial. 
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LEMMA 3.6: For each a < wt either Y N (wa + w) or (wa + w ) \ Y  is large. 

Proof." Assume on the contrary that  there are pairs (((fi, xi) : i < n ) ,  h) and 

(((fi, x i ) :  n _< i < n q, k),  h') showing that neither Y N (wa q-w) nor (wa q , w ) \ Y  

is large. Then ( ( ( f  i, xi) : i < n + k),  h (J h') shows that  w a + w is not large. | 

So we can assume that the set 

L = {a < wl: V n (wa + w) is large} 

is uncountable and to complete the proof of Theorem 3.1 it is enough to show 

that  in this case G ~- G[Y]. By 0 +, we can find a club subset C c L  ~ such that  

Y N w7 E M~, C n w7 E M~ and w7 = ~/whenever 7 E C. We can assume that  

0 E C .  

Write C = {~/v: u < wl}. By induction on u < Wl, we will construct functions 

fv such that  

(a) [Y], fv e 
(b) ( f , :  # < v) • Msup{x~+l: ,<v}- 

Take fo = 10. If v = # q, 1, then let f ,  = 9Yn~-r~,f,. If v is limit, then put  f~ = 

tA {fu: # < g}. Clearly (a) and (b) remains valid. Finally put f = U {fv: v < Wl}. 

Then f :  G ~ G[Y], so the theorem is proved. | 

4. A model without quasi-smooth graphs 

Given an Aronszajn-tree T = (o)1 , -~)  define the poset QT as follows: the under- 

lying set of QT consists of all functions f mapping a finite subset of wl to w such 

that  f - l { n }  is antichain in T for each n E w. The ordering on QT is as expected: 

f <-QT 9 iff f D g. For 7 < Wl denote by T 7 the set of elements of T with height 

7- Take T<~ = [J7<8 TT. If x E T~ and 7 < 6, let x[7  be the unique element of 

T7 which is comparable with x. We write C for the poset (Fin(wy, 2), D), that  is, 

forcing with C adds wl-many Cohen reals to the ground model. 

THEOREM 4.1: I f  ZF is consistent, then so is ZFC + "there are no non-trivial 

quasi-smooth graphs on ~d 1 ". 

Proof." Assume that  GCH holds in the ground model. Consider a finite support 

iteration (P~, Qj: i _< w2, j < w2/satisfying (a)-(c) below: 

(a) If j < ~2 is even, then Qj = C. 

(b) If j < w2 is odd, then V P~ ~ "Qj = QTj for some Aronszajn-tree Tj". 
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(c) vP~2 ~ "every Aronszajn tree is special". 

We will show that vPw2 does not contain non-trivial, quasi-smooth graphs on Wl. 

To start with we introduce some notation. Consider a graph G = (V, E). 

For x • V define the function tpc(x):  V \ {x}  ~ 2 by the equation G(x) = 

tpo(x)- l{1}.  Given A C Y write tpc(x,  A) = tpc(x)[A. 

If A C V and t • 2 A, take rla(t) = {x • V \ A: tpa(x,  A) = t} and rl~(t) = 

{x • V \ A :  ] tpc(x,A)Atl  < w}. For x • V and A C Y put twina(x,A) = 

r la( tpa(x,  A)) = {y • Y \ A: tpa(x,  A) = tpa(y,  A)}. 

For A C V define the equivalence relation =a,A on V \ A as follows: 

x =a,A Y iff ]tpa(x,A)AtpG(y,A)] < w. 

For x E V \ A denote by [x]C,A the equivalence class of x in =G,A. Clearly 

[x]G,A = rl~(tpv(x, A)). Write G/  --=C,A for the family of equivalence classes of 

=--G,A. 
We divide 1C into three subclasses,/Co,/C1 and K2, and investigate them sep- 

arately to show that vP~2 ~ "(VG E 1Ci) G is not quasi-smooth" for i < 3. 

Take 

K:o = (G • ~: 3A • [~1] ~ Iv~ - c , ~  I = ~1},  

~1 = ( a  • ~: VA • [~1] ~ 3x I~1 \[xlc,AI < ~1} 

and 

4.1. G E L:0. First we recall a definition of [1]. 

DeIJnition 4.2: A poset P is s tab le  if 

VB E [P]~ 3B* E [p],O Vp E P 3p' <_ p 3p* E B* Vb E B (p'lipb iffp*ileb ). 

We will say that  p' and p* are twins  for B and that B* shows t h e  s tab i l i ty  

of  P for B. I 

LEMMA 4.3:P~2 is stable. 

Proof: First let us remark that  it is enough to prove that  both C and QT a re  

stable for any Aronszajn-tree for in [1] it was proved that  any finite support 

iteration of stable, c.c.c, posets is stable. 
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It is clear that C is stable• Assume that T is an Aronszajn tree and B C [QT] w. 

Fix a countable ordinal 6 with {dom(p): p e B} c T<~ and take B* = {p E 

QT: dom(p) C T<~+~}. It is not hard to see that B* shows the stability of P for 

B. | 

For G E/(: take G E K:~ iffthere is an A E [wl] ~ such that the set {x: I[x]c,AI < 

w} is uncountable. 

Given G E K;o we will write G E E~) iff there are disjoint sets Ao, A1 E [Wl] ~ 

such that  

(1) x =a,Ao Y i f fx  --G,A1 Y for each x , y  E tzl \ Ao U A1, 

(2) the set {x: I[x]c,Aol < w} is uncountable. 

LEMMA 4.4: Assume CH. I f  G E 1C o, then there is a partition (Vo, V1) of wl so 

that for each stable c.c.c, poser P we have 

V P ~ "G is not isomorphic to G[V/] for i E 2". 

Proo~ Pick Ao, A1 E [Wl] ~ witnessing G E K:~. Write A = Ao U A1. Take 

E = E(G).  

Let ~ be a large enough regular cardinal and fix an increasing sequence 

(N~ : v < wl) of countable, elementary submodels of 7-/~ such that 

(i) G, A, Ao, A1 E No, 

(ii) (N~: v < #) E N ,  for # < 031. 

For x E wl \ A take 

rank(x) = min{v: x E N,}.  

Fix a partit ion (So, St)  of wl with ISo[ = ISll = ~ I .  Take 

V/=  Ai U rank-  1Si 

for i E 2. 

We show that the partit ion (Vo, V1) works. 

Assume on the contrary that  P is a stable c.c.c, poset, ] is a P-name of a 

function, Po E P and 

G ~ G[Yo]" - - - -  . 

Without loss of generality we can assume that Po = 1p. Now for each c E 

Ao choose a maximal antichain Jc C P and a function he: J~ ~ V such that  

ql'----"]-l(c) = he(r)" for each q E Jc. 
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Take B = U{Je: c • Ao} and pick a countable B* C P showing the stability 

of P for B. 

For b • P define the partial  function dtb: wl ~ 2 A° as follows. Let x • wl. If 

there is a function t • 2 A° so that  

(a) t(c) = 1 ~ for each q • Ie if q and b are compatible conditions, then 

{x, he(q)} • E,  

(b) t(c) = 0 ~ for each q • Ie if q and b are compatible conditions, then 

(x, he(q)} ~ E, 

then take dtb(x) = t. Otherwise x ~ domdtb.  

SUBLEMMA 4.4.1: Ifpl~-"](x) = y", then there a r e p  ~ < p and b • B* such that 

b and p' are twins for B and dtb(x) = tpc (y ,  Ao). 

Proof: By the choice of B*, we can find a pl < p and a b • B* so that  p~ and 

b are twins for B. Let c • A0. For each q • Jc, if q and p~ are compatible in P,  

then (y, c} • E iff (x, he(q)} • E , because, taking r as a common extension of 

q and p' ,  we have rl~---"](~) = i) and ] ( h ~ - ) )  = 5". So (y, c} • E iff for each 

q • Ie if q and p '  are compatible, then (x, he(q)} • E. But p '  and b are twins for 

U(Je:  c • Ao}, so dtb(x) ~-- dtp(X) -= tpG(y, A0). I 

SUBLEMMA 4.4.2: There is a b • B* such that 

(*) ]{t • randtb: ]rl~(t)] < w}] = wl. 

Proo~ Let G be a P-generic filter over V. Put  

9 v = { tpc(y ,  Ao): y • Vo \ Ao, I[Y]C,Ao] -< w}. 

Then I.T'I = wl, so we can write 9 v = (t~ : v < wl}. Fix sequences (p~ : ~ < wl) c 

G, (x~ : u < wl) C wl and (y~ : u < Wl) C •1 such that  p~,,~--"](x~,) = y~," and 

tpc(y~,  Ao) = t~. By Sublemma 4.4.1, 

U randtb _~ ~'. 

bEB* 

But B* is countable, so we can find a b E B* satisfying ( . )  above. 

Fix b E B* with property ( ,) .  Consider the structure 

Af = ( P [ ( B  U B*), B, B*, (Je, he: c E Ao)). 



364 s. SHELAH AND L. SOUKUP Isr. J. Math. 

By CH, there is a ~ < wl wi th  Af E N~. Pick # E $1 \ u. Since G, A/', b E N~, it 

follows tha t  dtb E N~ C N~,. By  ( , )  and (ii), there  is a 

with Irlb(t)l _< o:. Then 

t E r and tb  n (N, \ U N~) 
~<~ 

(t) rib(t) c "- U 

P ickx  E wl wi thdtb(x)  = t. F indp  E ~ and y E Vo such tha tp_< band 

pl~--"](x) = y".  By  Sub lemma  4.4.1, there are pr _< p and b r E B* such tha t  

p' and b' are twins for B and dtb,(x) = t p a ( y ,  Ao). But  p _< b, so dtb(x) = 

dtb,(x).  Indeed,  let c E Ao and assume tha t  dtb,(x)(c) = 1. Pick q E Jq which 

is compat ib le  with b'. By  the definition of dtb,, it follows tha t  {h~(q), x} E E. 

Since p~ and b ~ are twins for B,  so pr and q also have a common  extension q~ in 

P .  But  p~ < p _< b, so q~ witnesses tha t  b and q are compat ible .  Thus,  by the 

definition of dtb, we have dtb(x)(c)  = 1. 

Thus  t p a ( y ,  Ao) = dtb,(X) = dtb(x) = t. By (t),  this implies tha t  rank(y)  = #. 

But ,  by the construct ion of the par t i t ion  (V0, V1), there are no y E 1/o wi th  

rank(y)  = #. Contradict ion,  the l emma  is proved. I 

LEMMA 4.5: Assume CH. I f  G E/C$, then V c ~ " there is a partition (Vo, V1) of 

wl so that [or each stable c.c.c, poset P we have: 

V C*P ~ "G is not isomorphic to G[V~] for i E 2". " 

Proo£" Fix a set A E [wl] '~ witnessing G E /C~ and a bijection f :  A --* w in 

V. Let r: w --* 2 be the character is t ic  function of a Cohen real from V c. Take 

A~ = (.f o r ) - l { i }  for i < 2. Then  (Ao, A1) is a par t i t ion  of A. Using a t r ivial  

densi ty a rgument  we can see tha t  x ~a ,A  Y implies x ~a,A~ Y for i < 2 and for 

x, y E wl \ A. Thus  V ¢ ~ "Ao and A1 witness G E /C~". Applying L e m m a  4.4 

in V c we get the desired par t i t ion  of wl. I 

LEMMA 4.6: In V Pw2 , if  G E ~co is quasi-smooth, then G E/C~. 

Proo~ Choose a set A E [Wl] ~ witnessing G E /Co and a bijection f :  A ~ w. 

Pick a < w2, a is even, with A, f ,  G E V P~ . From now on we work in V P~ . Let 

{[xv]a,A: u < wl} be an enumera t ion  of the equivalence classes of =G,A. Fix a 
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partition (I0, 11) of idl into uncountable pieces. Let r: id -* 2 be the characteristic 

function of a Cohen real from V P'*c. Take Ai = ( f  o r ) - l { i }  for i < 2. Then 

(A0, A1) is a partition of A. Using a trivial density argument we can see that 

x ~a,A Y implies x ~a,A~ Y for i < 2 and for x, y E idl \ A. For i E 2 put 

Bi = Ai U {x,:  u E I/} U {[Xu]G,A \{Xu}: I./ E I i - i } .  

Clearly (B0, B1) is a partition of idl and 

B i N [Xv]G,Ai = B i  N [X~,IG,A -~ {Xv}. 

So GIBe] e K,;. But G is quasi-smooth, so G ~ G[Bi] for some i E 2 in vP~2. 

Thus G E K:~ is proved. | 

4.2. G E K:I. We say that a poset P has property Pr  iff for each sequence 

(Pv: u < idl) C P there exist disjoint sets Uo, UI E [ida] Wl such that  whenever 

a E Uo and f~ E U1 we have PolIPP~. 

LEMMA 4.7: C has property Pr. 

Indeed, C has property K. 

LEMMA 4.8: I f  T is an Aronszajn-tree, then QT has property Pr. 

Proof: Let (p~ : a < idl) C P be given. We can assume that there are a sta- 

tionary set S c wl, p* E QT, 7" < idl, n E id and {z~: i < n} C T such that for 

each a E S 

(a) x[a E dom(p~) for each x E dom(p~) with heightT(x ) > a, 

(b) p~ [T<~ = p*, 

(c) Idom(po) n T~ I = n, 

(d) writing dom(po) f3 To = { x ~ , . . . , x ~ _ l } ,  x~ <on "'" <on x ~ - l ,  the se- 

quence @,~(X'~),... ,P,~(z'~-I))is independent from a, 

(e) "y* < c~ and the elements x~ [ 'y*, . . . ,  x,~_ 1 [-y* are pairwise distinct, 

o [.y. = zi for i < n. (f) xi 

For each fl < idl and ff = (Yo,.. . ,  Yn-1) E (Tz) n take 

S~ = {c~ E S \ fl: x 7 [/3 = yi for each i < n}. 

Let 

c *  = < id, \ v #  < • (Tz)  (ISel __ --* c 
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Now {p~: a E S n C*} are wl members of P,  so for some a < /3 E S N C* 

the conditions p~ and Pa are compatible. Since p~(x~) = p~(x~), x~ and x~ 

are incomparable in T for l < n. So for some u < a, x~ [L, ¢ x~ [~ whenever 

l < n. On the other hand, for l ¢ m < n we have x~[~ ¢ x ~ [ u  because 

x~[3`* = zz ¢ Z m  = x~[3`*. Take y~ = x~[v and yb = x~[v for 1 < n and 

write ~ = (y~ , . . .  YX-1), ~ (Yo b, b a , = . . . .  Yn-1) • The elements {Yi, y/b: i < n} are 

pairwise different, so for each a '  E Sa and/3' E St, the conditions p~, and pz, are 

compatible. But ISal = Is~I = Wl, because a E Sa, /3 E S~, u < a and c~ E C*. 

I 

A poset P is called we l l -me t  if any two compatible elements Po and Pl of P 

have a greatest lower bound denoted by Po A Pl- 

LEMMA 4.9: Assume that the poset P has property Pr and V p ~ "the poset 

Q has property Pr". Let {(p~,qa) : a < Wl} c P *  Q. Then there are disjoint 

sets Uo, U1 E [o21] w l  SUCh that for each 3  ̀E Uo and 6 E U1 the conditions (pv, q.y) 

and (p~, q~) are compatible, in other words, p~ and P6 have a common extension 

pv,~ in P with pv,el~--"q~ [[Q qe". If  P is weB-met, then we can find conditions 
_ ' q ~ "  {p~: a E Uo U U1} in P with p~ < p~ such that p~ A p~,~--"q~ IIQ for each 

7 E U o a n d b E U 1 .  

Proo~ Let gr b e a P - n a m e  for the set U = { a : p ~  E 6P}, where gp is the 

P-generic filter. Since P satisfies c.c.c., there is a p* E P with p*~"16"]  = ~o1". 

Since V P ~ "Q has property Pr", there is a condition p <_ p* and there are P-  

names such that pie-- '% = {&~: 3' < wl} E IN] aJ1 , for i E 2, and qao and qa] are 

compatible whenever % 5 E a~l ". Choose conditions p~ < p and ordinals/30/31, 
• * I ~ - - "  " i ^ i  ,, with p~ a.~ =/3~ for i < 2. 

Now consider the sequence A = {p~: 3  ̀< Wl}. Since P has property Pr, there 

are disjoint, uncountable sets Co, C1 C A such that p~ and p~ are compatible 

whenever 3̀  E Co and 6 E C1. Take Ui = {/3~: 3  ̀E Ci} for i E 2. We can assume 

that Uo c) U1 = ~. Let ~ E Co and 5 E C1 and let p" be a common extension of 

p~ and Pc" Then " ,, o f), that is, and in gp" ,  so p", • * P '~--- /3"r'/3~ E Pa ° Pa~ are must 

be a common extension of Pag and p ~ .  So p"l~---"/3 ° E Vo and/3~ E V~", thus 

p"le--"q~o and qa] are compatible in Q", so (pao, qao } [I,,Q (Pal,  qa] }" 

Suppose that P is well-met. Take P~o = P~ A pao and p~] = p~ A Pal" It works 

because we can use p~ A p~ as p" in the argument of the previous paragraph. 

I 
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LEMMA 4.10: I f  (R~: a _< #, S~:/3 < #) is a finite support iteration such that 

V n~ ~ "S~ has property Pr" for a < #, then R ,  has property Pr, as well. 

Proof: We prove this lemma by induction on #. The successor case is covered 

by lemma 4.9. Assume that p is limit. Let (p~ : ~ < Wx) C R~. Without loss of 

generality we can assume that (supp(p~): ( < wl) forms a A-system with kernel 

d. Fix v < It with d C v. By the induction hypothesis, the poset R,  has 

property Pr, so there exist disjoint sets U0, U1 E [wl] ~1 such that whenever 

E Uo and r/ E Vl we have P~IIR~Pv. But P~iIR~P~ implies P~I[R,P~ because 

supp(p~) M supp(p~) C ~, so R~ has property Vr, as well. I 

The previous lemmas yield the following corollary. 

LEMMA 4.11: P ~  has property Pr. 

Given G = (o;1, E) E ~1 and ~, a , /3  E ~ l  with ~ E a N/3 take 

D~(a,/3) = { ,  E (: {a, v} E 'E iff {/3, v} ¢ E}. 

LEMMA 4.12: I f  G E tC1, then 

Proo~ Since G E/C1, we have an x E wl with I~1 \[x]¢ I < Wl. Choose ea(~) E 

Wl \ ~ with wl \[x]~ c ea(~). It works because a , /3  > ea(~) implies a , /3  E [x]e. 

I 

The bipartite graph (w, x 2, {((~,,0), (It, 1)}: v < It < Wl}) will be denoted by 

LEMMA 4.13: H G  E/C1, then neither G nor its complement may have a - -  not 

necessarily spanned - -  subgraph isomorphic to [wl;Wl]. 

Proof: Let G =  (Wl,E). W r i t e E ( a )  = { ~ E W l : { ~ , a }  E E}. Assume on the 

contrary that A, B E [wl] ~ are disjoint sets such that {a,/3} E E whenever a E 

A and/3 E B with a </3. Without loss of generality we can assume that (A \ a +  

1) n e(a) = 0 for each a E A. Write A = {a~ : ~ < wl}. Then for ~ E wl the set 

F(~) = (Ana l )  \ E(a~+l)  is finite because a~+~ > e(a~) and ( A n a l )  \ E(/3) = 0 

for all but countable many /3 E B. By Fodor's lemma, we can assume that 

F(~) = F for each ~ E S, where S is a stationary subset of w~ containing limit 

ordinals only. Let T = {~ E S: F C de} and take W = {a~+x: ~ ~ T}. Then 

G[W] is an uncountable complete subgraph of G. Contradiction. I 
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LEMMA 4.14: If  G • tU~ and V c ~ "Q has property Pr", then 

Isr. J. Math. 

V c*Q ~ "G ~ G[f-~{i}] for i < 2", 

where f :  w~ ~ 2 is the C-generic function over V. 

Proof Assume on the contrary that 

v --- 

To simplify our notations, we will write E for E(G), D~(c~, ~) for D~(c~, ~) and 

e(~) for ec(~). 

Let Co = (5 < Wl: ~ < 5 implies e(~) < 5}. Clearly Co is club. Take C~ = 

(5 < w~: (p, q) I~--"]~"~ = f -~(0}  ~ ~"}. Since C * Q satisfies c.c.c, the set C~ is 

club. Put  C2 = Co M C~. 

Now for each ~ < Wl let 5, = min(C2 \ ~÷1) and choose a condition (p~, q~) 

(p, q) and a countable ordinal % such that 

{ p . ,  = 

Since "y, > 5~ > e(~) for each a E wl, we can fix a stationary set S C wl and 

a finite set D such that D , (5 , ,  "~,) = D for each (~ E S. Since C is well-met, 

applying lemma 4.9 we can find disjoint uncountable subsets So, $1 C S and a 

sequence (p~: c~ • So U $1) c C with p~ _< p ,  such that p~ Ap~l~-- "q~ IIQ q~" for 

each a • So and f~ • $1. 

We can assume that  the sets {dom(p~): (~ • So} and {dom(p~): ~ • $1} form 

A-systems with kernels do and dl, respectively. 

Take y o = {(~ • So: {~,5,} • E} and Y~ = {c~ • $1: {~,5,} ~ E} for ~ < wl. 

Write Y~ = (~ < Wl: ]Y~I = wl} and Z~ = wl \ Yi for i < 2. 

By 4.13, the sets Zi are countable. Pick ~ • (::2 with D U do U dl W Zo U Z1 C ~. 

Let ~' = m i n ( C 2 \ ~ + l )  a n d S "  = m i n ( C 2 \ ~ ' + l )  . Since d o U d l  C ~ a n d  

IY~°l = IY~ll = wl, we can choose c~, • y i \ ~ , ,  with dom(p~,)M [~,~') = 0 for 

i = 0, 1. The set W = D~, (5~ o, 5,~ ) N [~, ~')is finite because 5,, _> (~i >_ ~" > e(~') 

for i < 2. Choose a C-name q such that  P~o A p~l I~--- "q is a common extension 

o fq ,  o and q~ in Q" and take 

r = (p~o Up~ 1U {(u, 1): u E W } , q ) .  
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! 
Since W M (dom(P~o) O dom(pa,))  = 0, r is a condition. 

Pick a condition r '  _< r from C * Q and an ordinal ~? such that  rqe-"]~(~) = 7)". 

Now ~/E [~, ( ')  because ~, ~' E C1. Since 

rq~--"]~(6~,) = -~,,, h(~) = 7) and ]~ is an isomorphism", 

so {6~o, ~} E E and {6~,, ~} ¢ E imply that {3'~o, r/} E E and { ~ , ,  r/} ¢ E. But 

D~,(6~, ,%,)  = D and D C ~ so {~o ,~}  E E and {6,1,~} ~ E, that  is, ~? E W. 

But rl~---"ran(J~) = f - l { 0 }  and f - l { 0 }  n Ifd = 0", contradiction. I 

4.3 G E/(:2. Given a non-trivial graph G = (V, E} with Y E [wl] ~ define 

r ( a )  - -  {(~ E o.)1: 3o~ E V o~ 2 (~ and [twina(a, V M < u}. 

The following lemma obviously holds. 

LEMMA 4.15: f f  Go and G1 are graphs on uncountable subsets of wl, Go ~- G1, 

then F(Go) = F(G1) mod NS~ .  

LEMMA 4.16: Given G E Y~ \ t:o and S C Wl there is a partition (Vo, "171) of Wl 

such that r (c [v0] )  c SmodNS~ 1 and F(G[V1]) c ua \ SmodNSo,1. 

Proof: Let n be a large enough regular cardinal and fix an increasing, continuous 

sequence (N~ : v < wl) of countable, elementary submodels of 7-/~ = (H~, E) such 

that G , S  E No and (N~: v _< p) E N~+I for p < wl. Write -~ = N~ M uh and 

C --  {"/v : /2 < o31 }. Take 

Vo = U (%,.1 ". %, ) and V1 = o~1 \ Vo = U ("Y,.,+, \ "7~,). 
~ES ~'Ewl \ S 

It is enough to prove that r(C[Vo]) c s mod NS~I. Assume that  3~ E F(G[Vo]), 

"~ = ~, a > "~v, a E Vo and Itwina[vo](a,'~v M Vo)I = w. Since G, u, "/~ M Vo E 

N,+I  and [G/ --a,Von~ [ _< w, we have tpaa[vo](a,7~ M Vo) E N~+I and so 

twina[vo](a, '~) C Nv+l as well. Thus a E "/~+1 \ 7 . -  Hence a E Vo implies 

7n : /] E S which was to be proved. I 

LEMMA 4.17: If  G E lC\ICo and F(G) ¢ 0modNS~l ,  then G is not quasi- 

smooth. 

Proof: Assume that  S = F(G) is stationary and let (So, $1) be a parti t ion of S 

into stationary subsets. By Lemma 4.16, there is a parti t ion (Vo, V1) of wl with 
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F(G([Vi]) n S c Si. Then G[VI] and G can not be isomorphic by Lemma 4.15. 

I 

Let us remark that G E ~2 iff G E ~ \  ~0 and there is an A E [wl] ~ and 

x E Wl \ A such that [[X]G,A[ = [Wl \[X]G,A[ = Wl. 

Given G E/C2 we will write G E/C~ iff there are two disjoint, countable subsets 

of a l ,  Ao and At, and there is an x E wl, such that I[x]a,Aot = lwl \[x]a,Aol = wl 

and [x]a,Ao \ A1 = [X]G,A1 \ Ao. 

LEMMA 4.18: I f  G E tg2, then G E (1C~) yc. 

Proo£" Assume that A E [wl] ~ and x E Wl witness G E E2 in the ground model. 

Fix a bijection f :  A ~ w in V. Let r: w ~ 2 be the characteristic function of a 

Cohen real from V c. Take Ai = ( f  o r ) - l{ i} .  By a simple density argument, we 

can see that  [x]a,no = [X]a,A = [X]G,AI. Thus A0, A1 and x show that g E )E~. 

I 

LEMMA 4.19: Assume that every Aronszajn tree is special I f  G E IC~2, then 

there is a partition (Vo, V1) of wl such that F(G[V~]) is stationary for i < 2. 

Proof'. Choose A0, A1 and x witnessing G E )E~. Let A = Ao U A1. Take 

Co = [X]a,Ao \ A, C1 = (wl \[x]a,Ao) \ A and consider the partition trees Ti 

of G[Ci] for i E 2 (see Definition 2.3). These trees are Aronszajn-trees because 

G is non-trivial. Fix functions hi: Ci --* w specializing Ti. We can find natural 

numbers no and nl  such that the sets Si = {u: h~-l{ni}M(Ti)~ # 0} are stationary, 

that is, h7l{ni}  meets stationary many levels of Ti. Take B~ = hT~{ni} and 

Yi = {c E Ci: 3b E Bi c '<~ b}. 

Pick any 5 E Si. Let b E BiM(Ti)~. I f c  E Yi\(Ti)<~, c ~ b, then c[~ 

b by the construction of Yi. So tpaG[yd(C, (Ti)<e) = tpGa[y~](c[5, (Ti)<~) 

tpGa[yd(b, (Ti)<~) by the definition of the partition tree. This means that  

twinvwi](b, (71)<~) = {b}. 

Thus 5 E F(G[Yi]) provided (Ti)<~ C 5 and b _> 5. But these requirements 

exclude only a non-stationary subset of S~. So F(G[Yi]) D Si m o d N S ~ .  

Let Vi = Yi U Ai U (Cl- i  \ Yl-i)  for i E 2 and consider the partition (V0, V1) 

of wl • If z E Vi \ (Yi  U Ai), then tpG(z, Ai) ~ tpc(b,  Ai) for any b E Bi because 

Co C [gC]G,AI and C1 C Wx \[x]a,A,. So F(G[V~]) D Si modNS~l holds. I 
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Now we are ready to conclude the proof  of Theorem 4.1. We will work in v P ~ .  

Assume tha t  G E/(:.  We must  show tha t  G is not quas i -smooth.  

Pick a v < w2 with G E (K:) Vp~ and Q .  = C. Assume first t ha t  G E (K:o) vp~ . If 

G were quas i -smooth  in VP~2, G E (lC~) P~ would hold by L e m m a  4.6. So we can 

assume tha t  G C (/C~) v~. Since P~2 is a stable, c.c.c, poser,  so is P~2/P,+I. So, 

by L e m m a  4.5, there is a par t i t ion  (Vo, V1) of wl in V pÈ+~ such tha t  vP~2 ~ " G  

is not isomorphic to G[Vi] for i < 2". 

Assume tha t  G C (/C1) y ' ~ .  Since P~2 has p roper ty  Pr,  so is P~2/P~+I. Thus,  

by L e m m a  4.14, the par t i t ion  (Vo, V1) of wl given by the Q.-gener ic  Cohen reals 

in V P~+~ has the p roper ty  tha t  vP~2 ~ "G is not isomorphic to G[V~] for i < 2". 

Finally assume tha t  G E (/C2) Vp~ . By L e m m a  4.18, we have G E (/C~) vP~+~ . 

Since P~2 satisfies c.c.c, it follows tha t  G C (IE~2) yv~2 . So apply ing  L e m m a  4.19 

we can find a par t i t ion  (V0, V1) of Wl such tha t  bo th  F(G[V0]) and F(G[V1]) are 

s ta t ionary.  Thus,  by L e m m a  4.17, nei ther  G[Vo] nor G[V1] are quasi -smooth.  So 

G itself can not be quasi -smooth.  | 
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