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ABSTRACT
Let K be the family of graphs on w1 without cliques or independent subsets
of size w;. We prove that
(a) it is consistent with CH that every G € K has 2¥! many pairwise
non-isomorphic subgraphs,
(b) the following proposition holds in L: (%) there is a G € K such that
for each partition (A, B) of w1 either G 2 G[A] or G 2 G[B],
{(c) the failure of (*) is consistent with ZFC.

1. Introduction

We assume only basic knowledge of set theory — simple combinatorics for section
2, believing in L = ¢ defined below for section 3, and finite support iterated
forcing for section 4.

Answering a question of R. Jamison, H. A. Kierstead and P. J. Nyikos [5]
proved that if an n-uniform hypergraph G = (V, E) is isomorphic to each of its
induced subgraphs of cardinality |V|, then G must be either empty or complete.
They raised several new problems. Some of them will be investigated in this

paper. To present them we need to introduce some notions.
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An infinite graph G = (V, E)is called non-trivial iff G contains no clique or
independent subset of size |V|. Denote the class of all non-trivial graphs on w;
by K. Let I(G) be the set of all isomorphism classes of induced subgraphs of
G = (V, E) with size |V|.

H. A. Kierstead and P. J. Nyikos proved that {I{G}| > w for each G € K and
asked whether |I(G)| > 2 or |I(G)| > 2t hold or not. In [3] it was shown
that (i) [I(G)| > 2¢ for each G € K, (ii) under ¢ there exists a G € K with
I(G)| = wy. In section 2 we show that if ZFC is consistent, then so is ZFC +
CH + “|I(G)| = 2«1 for each G € K”. Given any G € K we will investigate its
partition tree. Applying the weak ¢ principle of Devlin and Shelah [2] we show
that if this partition tree is a special Aronszajn tree, then [I(G)| > w;. This
result completes the investigation of problem 2 of {5] for w;.

Consider a graph G = (V, E}. We say that G is almost smooth if it is isomor-
phic to G[W] whenever W C V with |V N\ W| < |V|. The graph G is called quasi
smooth iff it is isomorphic either to G[W] or to G[V ~ W] whenever W C V.
H. A. Kierstead and P. J. Nyikos asked (problem 3) whether an almost smooth,
non-trivial graph can exist. In [3] various models of ZFC were constructed which
contain such graphs on w;. It was also shown that the existence of a non-trivial,
quasi smooth graph on w; is consistent with ZFC. But in that model CH failed.
In section 3 we prove that {7, and so V=L, too, implies the existence of such a
graph.

In section 4 we construct a model of ZFC in which there is no quasi-smooth
G € K. Our main idea is that given a G € K we try to construct a partition
(Ap, A1) of wy which is so bad that not only G 2 G[4;] in the ground model but
certain simple generic extensions can not add such isomorphisms to the ground
model. We divide the class K into three subclasses and develop different methods
to carry out our plan.

The question whether the existence of an almost-smooth G € K can be proved
in ZFC is still open.

We use the standard set-theoretical notation throughout, cf [4]. Given a graph
G = !V,E)we write V(G) = V and E(G) = E. If H C V(G) we define G[H]
to be (H,E(G) N [H]?). Given z € V take G(z) = {y € V: {z,y} € E}. If G
and H are graphs we write G & H to mean that G and H are isomorphic. If
f: V(G) —» V(H) is a function we denote by f: G 2 H the fact that f is an
isomorphism between G and H.
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Given a set X let Bij,(X) be the set of all bijections between subsets of X. If
G = (V, E)is a graph take

I50,(G) = {f € Bif,(V): f: Gldom(s)] = Glran(f)]}.

We denote by Fin(X,Y") the set of all functions mapping a finite subset of X to
Y.

Given a poset P and p,q € P we write p|| ,q to mean that p and ¢ are compatible
in P.

The axiom &1 claims that there is a sequence <Sa: a < w1> of countable
sets such that for each X C wy we have a closed unbounded C C w; satisfying
XnveS,andCnvesS, foreachveC.

We denote by TC(z) the transitive closure of a set z. If  is a cardinal take
H, = {z: |TC(z)] < k} and H, = (Hy, €).

Let us denote by D, the club filter on w;.

2. I(G) can be always large

THEOREM 2.1: Assume that GCH holds and every Aronszajn-tree is special.
Then |I(G)| = 2“1 for each G € K.

Remark: S. Shelah proved, (7, chapter V. §6,7], that the assumption of Theorem
2.1 is consistent with ZFC. |

During the proof we will apply the following definitions and lemmas.

LEMMA 2.2: Assume that G € K, A € [w1]“* and |[{G(z) N A: z € wi| = w1.
Then |I{(G)| = 2«1.
Proof: See [3, theorem 2.1 and lemma 2.13]. n
Definition 2.3: Consider a graph G = (w1, E).
1. For each v € w; let us define the ordinal 7, € w; and the sequence
<§,‘;: v <7,) as follows: put £ = 0 and if (£4: o < ) is defined, then
take

& = min {€: Va <7 € > & and ({€2,€} € E iff {€2,v} € E)}.

If €& = v, then we put 7, =17.
2. Given v, 4 € wy write v <@ p iff £ = €% for each v < 7,,.
3. Take TG = (wl, -<G>. T¢ is called the partition tree of G. |
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LEMMA 2.4: If G = (wy, E) € K with |I[(G)| < 2*1, then T€ is an Aronszajn

tree.

Proof: By the construction of 7€, if v, 4 € w1, v < g and G(v) Nv = G(p) Nv,
then v <G u. So the levels of TC are countable by Lemma 2.2. On the other hand,
TS does not contain w;-branches, because the branches are prehomogeneous
subsets and G is non-trivial. |

Definition 2.5:

1. Let F: (2¥)<“* — 2 and A C w;. We say that a function ¢g: w; — 2 is
an A-diamond for F iff, for any h € (2¥)*1, {a € A: F(h[a) = g(a)} is a
stationary subset of w;.

2. A C w, is called a small subset of w; iff for some F: (2)<“* — 2 no
function is an A-diamond for F.

3. J ={A Cuw;: Ais asmall subset of w, }. |

In [2] the following was proved:

THEOREM 2.6: If 2 < 2“1, then J is a countably complete, proper, normal

ideal on w;.
After this preparation we are ready to prove Theorem 2.1.

Proof: Assume that G = (wy, E) € K with |I(G)] < 2“* and a contradiction will
be derived.

Since 2*! = wy, we can fix a sequence {G,: v < wy} of graphs on w; such that
for each Y € [wy]*? there is a v < w; with G[Y] = G,.. Write G, = (w1, E,).

Consider the Aronszajn-tree T¢ = (w;,<%). Since every Aronszajn-tree is
special and 7 is a countably complete ideal on w;, there is an antichain § in 7€
with § ¢ J. Take

A={acw: 3o € S(a<a)}.

Now property () below holds:
(x) VoeSVpe(SUA)No+1da€ Ano ({o,a} € Eiff {p,a} ¢ E).

Indeed, if for each @ € AN o we had {0,a} € E iff {p,a} € E, then ¢ <% p
would hold by the construction of 7€,

Let vEw,c €S8, TCSNo and f: G(ANo)UT] — G, be an embedding.
Define F(v,0,T, f) € 2 as follows:

F(v,0,T,f)=1 ifIr€G,(Va€e Ano) ({z,f(e)} € E, iff {s,a}€E).
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In case wo = o, under suitable encoding, F can be viewed as a function from
(29)<1 to 2.

Since S ¢ 7, there is a g € 2" such that for every v € w; =2¥, T C S and
f:GI[AUT] = G,, the set

Sy ={o € S:g(o)= F(v,0,T o, f[o)}

is stationary. Take T = {o € S: g(¢) = 0}. Choose an ordinal ¥ < w; and a
function f with f: GJAUT] 2 G,. For each ¢ < w; with ¢ = wo it follows, by
(%), that

ceT ffIdzrew;YVaeSno ({z, fla)}€E, iff {o,a}€ E).

Thus g(c) = 0 iff F(v,0,TNo, f[o) =1, for each o € S, that is, S = @, which

is a contradiction. |

3. A quasi-smooth graph under {+

THEOREM 3.1: If {* holds, then there exists a non-trivial, quasi-smooth graph
on wi.

Proof: Given a set X, A C P(X) and F C Bij,(X) take

Cl(A, F)=({B: B> Aand VBy, B, € BVf € FVY € [X]<¥
{BQ U By, f”Bo, BoAY} C B}

We say that A is F-closed if A = CI(A, F). Given A, DCP(X), we say that D
is uncovered by A if |DNA| = w for each A€ Aand D € D.

LEMMA 3.2: Assume that FCBij,(X) is a countable set, A%, A'CP(X) are
countable, F-closed families. If DC P(X) is a countable family which is uncovered
by A% U Al then there is a partition (Bo, B1) of X such that D is uncovered by
Cl(A*U{B;},F) fori < 2.

Proof: We can assume that F is closed under composition. Fix an enumeration
{{Dn, kn, Foyin, An):n € w} of D x w x F<¥ x {(i, A):i € 2,4 € A'}. By in-
duction on n, we will pick points z, € X and will define finite sets, BS and B},
such that By N B: = 0 and B{CB;, ;.
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Assume that we have done it for n — 1. Write F,, = (fo,..., fk—1). Take
B,—1=BS_JUB!_, and

B} =B U J{f}Bn-1:5 < k}.
Pick an arbitrary point 2, € D,~(A, U B ). Put
By =B,
and
Bl = BT Uz} U {f; (zn): 5 < k).

Next choose a partition (B°, B) of X with B* D U{Bi: n < w} for i < 2. We
claim that it works. Indeed, a typical element of C1(A* U {B*}, F) has the form
C=AulJ{f/B:j <k},

where A€ A, k <wand fy,..., fr1 € F. So, if D € D, then

DNC D {zn: D= D, A, = A,in =i and F, = (fo,..., fe1)}

because z,, ¢ A and fj_l(xn) € B~ by the constuction. ]

Consider a sequence F' = (fo,..., fa—1). Given a family FCBij,(X) we say
that F is an F-term provided f; = f or f; = f~! for some f € F, for each i < n.
We denote the function foo---0f,_1 by F as well. We will assume that the empty
term denotes the identity function on X. If { < n take (3 F' = (fo,..., fi_1) and

Foy={ft,..., fa—1). Let
Sub(F) = {(fio,...,fi‘_l>ll§ N,ig <+ <1 < n}

Given f € F and z,y € X with z ¢ dom(f) and y ¢ ran(f) let F/®¥ be the term
that we obtain replacing each occurrence of f and of f~! in F with f U {(z,y)}
and with f=! U {(y,z)}, respectively.

LEMMA 3.3: Assume that FCBij,(X), ACP(X) is F-closed, Fy,...,F,_y are
F-terms, 29,...,2n-1 € X, Ag,...,An_1 € A such that for eachi <n

(*) 2 ¢ | J{F"Ai: F € Sub(F;)}.
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Iffe€ F,xr e X~dom(f),Y € [X~ran(f)]” with|ANY| < w for each A € A,
then there are infinitely many y € Y such that (x) remains true when replacing
[ with fU {(z,y)}, that is,

(%%) zi ¢ U {F"Ai: Fe Sub(Fif’z’y)}

for each i < n.

Proof: 1t is enough to prove it for n = 1. Write F' = (fy..., fe-1), 4 = Ao,
z = 7. Take
Yr,a = {y € Y: (*«) holds for y}.

Now we prove the lemma by induction on .
If k = 0, then Yg 4 = Y\ A. Suppose we know the lemma for k — 1. Using the
induction hypothesis we can assume that () below holds:

0 Y = ("{Yo,ry 411 <7, G € Sub((yF/=¥),G # Fev}].

Assume that |YF 4| < w and a contradiction will be derived.
First let us remark that either fy_; = f or fx_; = f~1 by ().

CaSE 1:  fr—1 = f~1. Then Yr 4DY N4 by (1), so we are done.
CASE 2:  fx—1 = f. In this case £ € A and for all but finitely many y € Y we
have z = Ff®¥(z). Then for each y,y’ € Y take

Hy,y) = max {1 <mi Vi <1 Ff"(a) = Ff{™ (2)}-

By Ramsey’s theorem, we can assume that I(y,3') = | whenever y,y € Y.
Clearly I < n. Then FJ™¥(z) # F4™¥ (z) but F{*3(x) = FY (x), s0 fi =
f'and F(flfi’)’(x) = g for each y € Y. Thus z = (_1yF/®¥(z) for each y € Y,
which contradicts () because z € A.

The lemma is proved. |

We are ready to construct our desired graph.

First fix a sequence {M,: a < wq) of countable, elementary submodels of some
Hy with (M,: v < a) € M, for each a < w,, where ) is a large enough regular
cardinal.

Then choose a {-sequence (S,: a < wy) € My for the uncountable subsets of
wi, that is , {& <wi: X Na =S4} ¢ NS(w1) whenever X € [w;]*1. We can also
assume that S, is cofinal in « for each limit a.
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We will define, by induction on «,
1. graphs G, = (wa, E,) with Gg = G4[wf) for 8 < a,
2. countable sets F, € Iso,(Ga),
satisfying the induction hypotheses (I)-(IT) below:
(I) {Swy: v < a} is uncovered by I, U J, where
I, = CI{G(w) nv: v e wa}, | ] Fp)
B<a

and

Jo = Cl{v~G(v): v € wa}, U Fs).
BLa

To formulate (II) we need the following definition.

Definition 3.4: Assume that @ = 8+ 1 and YCwa. We say that Y is large if
Vn € w, YV {{fi,z:): i < n),Vh
if
. Vi<n3a,-<ﬁfi€fa‘.,
Vi<nwo; <z <wpB,
. Vi < nran(f;)CY,
. Vi # j < nran(f;) Nran(f;) =0
5. h € Fin(Y Nwp,2) and dom(h) N|J{ran(f;):i <n} =0,
then
Jy € Y N [wB,wa) such that
6. Vi < n Vz € dom(f;) ({y, fi(z)} € Es iff {z;,2} € E,),
7. Vz € dom(h) {y,z} € E4 iff h(2) = 1. |

Take
(IT) If & = B+ 1, then wa is large. The construction will be carried out in such

W N

a way that
(Gp: B < a) € Ma and (Fs: § < @) € Ma.
To start with take Gp = (#,0) and F = {0}. Assume that the construction is
done for 5 < a.

CASE 1: « is limit. We must take G, = U{Gp: B < a}. We will define sets
FO, FlcIso,(Go) and will take F, = FQU FL.
Let
FO = {f €lsop(Ga) N Mg: I{an: n <w) Ca sup {an:n <w} =,
flwan € Fo, and flwan: Go, & G, [ran(f)] for each n € w}.
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Take F~ = e FPUFY I = Upea Ip and J; = Ugq Jo- Clearly F~CM,
with F~ € My41, 80 Moy | “|/F~| = w”. Obviously both I; and J; are
F~-closed and S = {S,: B < a} is uncovered by them.

From now on we work in My41 to construct .7-';. For WCwa write Ly =
{v < a: W (wv + w) is large}.

Take

Wa = { (W, f) € (P(wa) N Mg) X ( U Fs): Lw is cofinal in o
B<a
and f: Gy, & G, [W Nwyy] for some v; < a}.

We want to find functions g%/ O f for (W, f) € W, such that
(A) gW’f: Go & Ga[W]
(B) taking F! = {g"™/: (W, f) € W,} the induction hypothesis (I) remains
true.

First we prove a lemma:

LEMMA 3.5: If (W, f} € Wa, g € Is0p(Ga, Ga[W]), ¢ D f, g f| < w, then
(i) for each x € W~dom(f) the set

{y e W:gU {(z,9)} € Isop(Ga, Ga[W])}

is cofinal in wa.
(ii) for each y € Wran(f) the set

{x e W:gU {(z,y)} € Is0p(Ge, Ga[W])}

is cofinal in wa.

Proof: (i) Define the function h: ran(g)~ran(f) — 2 with h(g(2)) = 1iff {z,z} €
E,. Choose 3 € Ly with ran(h)Cwf and vy < 8. Since W N (wf + w) is large,
we have a y € W N [wf,wf + w) such that

1. {y, f(2)} € Eq4 iff {z,2} € E, for each 2 € dom(f),

2. {y,9(2)} € Eq4 iff h(g(z)) = i for each z € dom(g)~dom(f).
But this means that g U {(z,y)} € Isop(Gq, Go[W]).

(ii) The same proof works using that w8 + w is large for each 8 < a. 1

By induction on n, we will pick points z, € wa and will construct families of
partial automorphisms, {g%/: (W, f) € W,} such that ¢/ = U {g¥):n < w}
will work.
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During the inductive construction we will speak about F,-terms and about
functions which are represented by them in the n** step.
If F = (ho,...hx—1) is an Fo-term and n € w take Fjn) = jo o0 jr_ where

g ik = g%,
Ji= (g™t i h = (g™ ),
h; otherwise.

First fix an enumeration {((Wy, fa),Un,in):1 <n <w} of Wy X wa x 2 and
an enumeration (({(Fni:% <ln),jn, (Anit1 <Iln),Dp)n <w) of the quadruples
((Foy-- s Fr—1),J,(Agy. .-y A1), D) where k < w, Fy,...,Fix_1 are Fu-terms,
Jj€2,D €S and either j =0 and Ap,...,Ax_1 €I or j =1and Ag,..., A3
€J;.

During the inductive construction conditions (i)—(v) below will be satisfied:

@) 90 = £,

(ii) g7 € Isop(Ga, Ga[W)),

(ifi) g8 2 gnld, Lo N fl < w,
(iv) 2 ¢ U {F[’,"]Ak,i: Fe Sub(Fk,i)} for each i < I, and k < n,

(v) if i, = 1, then u, € dom(g¥/»),

if i, = 0, then either u,, ¢ W, or u, € ran(g}/~7/»).

If n = 0, then take ggv’f = f.

If n > 0, then let g¥¥"f = g,‘:V_{ whenever (W, f) # (W, f). Assume that
in=0, (W, f)= (W, fr) and u, ¢ dom(g:‘ﬁ‘l’f"). Then, by Lemma 3.5, the set
Y = {y e W: g™ U{(un,y)} € Iso,,(Ga,Ga[W])} is unbounded in wa. Since
the members of I U J, are bounded in wa, we can apply Lemma 3.3 to pick a
point y € Y such that taking g%~/» = g¥=/» U {(u,,y)} condition (iv) holds.

If i, = 1 and (W, f) = (W,, f»), then the same argument works.

Finally pick a point

2n ¢ D™ {FiAnit F € Sub(Foi),i < ln )

The inductive construction is done.
Take g%/ = U {g2"/: n <w}. By (v),

97: Gya 2 GuaW).

By (iv), we have
2 € D~ {Fi Ak i < I}
and so it follows that {S,: 8 < a} is uncovered by I, U J,.
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CASE 2: a=f+1.

To start with we fix an enumeration {{{(fF,z¥): i < ni), hi): k € w} of pairs
{{{fi,zi): 1 < n), h) satisfying 3.4.1-5.

H k € w take

BY = b {0} U {fF(v): i < nk, v € dom(ff) and {v,zf} ¢ Ep}
and
Bl =h;* (1 U {fF(w): i < nk, v € dom(ff) and {v,z}} € Ep}.

Applying Lemma 3.2 w-many times we can find partitions (C%,C}), k < w, of
wf such that, taking

If =cpu{Ci-kew},|JF)
<8
and
JF=Cl{Ipu{ckew}, | F),
v<h
the set {S.: v < 8} is uncovered by I U J7.
We can assume that B CCi for i < 2 and k < w because Bf € Jg and B} € I.
Take
E,=EsU{{r,wB+n}:v<wB, newandve B}

and
Fo=0.

By the construction of G, = {wa, E,), it follows that wa is large, so (II) holds.
On the other hand

Io = {XUY: Xelf,Ye [wa]<“’}

and
I, = {XUY: XelJl,Ye [wa]<°’},

50 {Suy: 7 < a} is uncovered by I, U Jo. Finally S, is cofinal in wa but the

elements of I, U J, are all bounded, so the induction hypothesis (I) also holds.
The construction is done. Take E = | J{Ey: @ < wi} and G = (w1, E). By (1),

G is non-trivial. Finally, we must prove that G is quasi smooth. Consider a set

Y Cw;. The following lemma is almost trivial.
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LEMMA 3.6: For each a < wj either Y N {wa + w) or (wa + w)\Y is large.

Proof:  Assume on the contrary that there are pairs {{{f;,z;): 7 <n),h) and
(({(fiyzi):n <1 <n+k),h') showing that neither Y N(wa+w) nor (wa+w)\Y
is large. Then ({({fi,z;): ¢ < n+k),hUh') shows that wa+w is not large. 1

So we can assume that the set
L ={a<w;:YnN(wa+w) is large}

is uncountable and to complete the proof of Theorem 3.1 it is enough to show
that in this case G & G[Y]. By O+, we can find a club subset CCL’ such that
YNwye M, CNwy € M, and wy = 7 whenever v € C. We can assume that
0eC.

Write C = {v,: ¥ < w;}. By induction on v < w;, we will construct functions
f. such that

() fu: Gy, 2 G, [Y), fu € F,,

(b) {fu: b < V) € Maup{y,+1: u<v}-
Take fo = 0. If v = p+ 1, then let f, = g¥™7 /s, If v is limit, then put f, =
U{fu: p < v}. Clearly (a) and (b) remains valid. Finally put f = U{f,: v < w;}.
Then f: G = G[Y], so the theorem is proved. 1

4. A model without quasi-smooth graphs

Given an Aronszajn-tree T = (wq, <) define the poset Qr as follows: the under-
lying set of Q7 consists of all functions f mapping a finite subset of w; to w such
that f~1{n} is antichain in T for each n € w. The ordering on Qr is as expected:
f <or giff f D g. For v < w; denote by T, the set of elements of T" with height
7. Take Tes = U, s Ty- fz € Ts and v < 4, let z[v be the unique element of
T,, which is comparable with z. We write C for the poset (Fin(wy, 2), D), that is,
forcing with C adds wy-many Cohen reals to the ground model.

THEOREM 4.1: If ZF is consistent, then so is ZFC + “there are no non-trivial

quasi-smooth graphs on w;”.

Proof: Assume that GCH holds in the ground model. Consider a finite support
iteration (P;, @;: 1 < wg,j < wq) satisfying (a)-(c) below:

(a) If j < wy is even, then Q; = C.

(b) If j < wy is odd, then Vi = “Q; = Qr, for some Aronszajn-tree T;”.
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(¢) VP2 |=“every Aronszajn tree is special”.

We will show that VP2 does not contain non-trivial, quasi-smooth graphs on w;.

To start with we introduce some notation. Consider a graph G = (V, E).
For x € V define the function tpg(z): V N{z} — 2 by the equation G(z) =
tpg(z)~1{1}. Given A C V write tpg(z, A) = tps(z)[A.

If AC Vandte 24, take rlg(t) = {x € VN A: tpg(z, A) = t} and rl;(t) =
{x € VN A: |tpe(z, A)At] < w}. For x € V and A C V put twing(z, A) =
rlg(tpg(z, A)) = {y € V™ A: tpg(z, A) = tpg(y, 4)}-

For A C V define the equivalence relation =g 4 on V ™ 4 as follows:

z=gay Iff |tpe(z, A)Dtpe(y, A)| < w.

For £ € V \ A denote by [z]g,a the equivalence class of z in =g 4. Clearly
[z]g,a = 1l (tpg(z, A)). Write G/ =g, 4 for the family of equivalence classes of
=G,A-

We divide K into three subclasses, KXy, X1 and Ko, and investigate them sep-
arately to show that VP | “VG € K;) G is not quasi-smooth” for i < 3.
Take

Ko = {G €eK:JA € [wl]w |G/ =¢,A l = wl},

Ki={G € K:VA € [w1]” 3z |w1 \[z]g,4] < w1}

and
Ko = KNKoUKy).

4.1. G € Ky. First we recall a definition of [1].

Definition 4.2: A poset P is stable if

VB e [P]”3B* € [P]* Vpe P 3p <p3Ip* € B*Vbe B (p/| b iff p*| ,b).
We will say that p’ and p* are twins for B and that B* shows the stability
of P for B. |
LemMma 4.3: P, is stable.

Proof: First let us remark that it is enough to prove that both C and Qr are
stable for any Aronszajn-tree for in [1] it was proved that any finite support
iteration of stable, c.c.c. posets is stable.
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It is clear that C is stable. Assume that T is an Aronszajn tree and B C [QT]W.
Fix a countable ordinal § with {dom(p): p € B} C T«s and take B* = {p €
Qr: dom(p) C Tesiw}- It is not hard to see that B* shows the stability of P for
B. |

For G € K take G € K} iff there is an A € [wq]” such that the set {z: |[2]g,4| <
w} is uncountable.

Given G € Ko we will write G € K, iff there are disjoint sets Ag, A; € [wl]w
such that

(1) x =g,4, y iff £ =¢ 4, y for each z,y € wy; N Ag U 4y,

(2) the set {z: |[z]c,4,| < w} is uncountable.

LEMMA 4.4: Assume CH. If G € K{,, then there is a partition (Vy, V) of w, so
that for each stable c.c.c. poset P we have

VP | “G is not isomorphic to G[V;] for i € 2.

Proof: Pick Ap, A; € [wl]w witnessing G € K. Write A = 4p U A;. Take
E = E(G).

Let x be a large enough regular cardinal and fix an increasing sequence
(N, : v < wy) of countable, elementary submodels of H,, such that

(i) G, A, Ag, A1 € Ny,

(if) (N, :v < p) €N, for p < wy.

For x € wy \ A take

rank(z) = min{v: z € N, }.
Fix a partition (Sp, S1) of wy with |Sp| = |S1] = wy. Take
V; = A;Urank™'S;

for i€ 2.
We show that the partition (Vg, V1) works.
Assume on the contrary that P is a stable c.c.c. poset, f is a P-name of a
function, py € P and
po—“f: G G[W)”.

Without loss of generality we can assume that pg = 1p. Now for each ¢ €
Ag choose a maximal antichain J. C P and a function h.: J. — V such that
@—“f~Y(&) = h(r)” for each q € J...
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Take B = J{J.: ¢ € Ao} and pick a countable B* C P showing the stability
of P for B.

For b € P define the partial function dty: w; — 240 33 follows. Let z € wy. If
there is a function ¢ € 24° so that

(a) t(c) = 1 <= for each ¢ € I, if ¢ and b are compatible conditions, then

{z,h.(q)} € E,
(b) t(c) = 0 <= for each ¢ € I, if ¢ and b are compatible conditions, then

{z,he(q)} ¢ E,

then take dty(z) = t. Otherwise z ¢ domdt,.

SUBLEMMA 4.4.1: prlk——“f:(:l:) = y”, then there are p’ < p and b € B* such that
b and p' are twins for B and dty(z) = tpa(y, Ao).

Proof: By the choice of B*, we can find a p’ < p and a b € B* so that p’ and
b are twins for B. Let ¢ € Ay. For each ¢ € J., if ¢ and p’ are compatible in P,
then {y,c} € E iff {z, h.(q)} € E , because, taking r as a common extension of
q and p', we have r+—“f(&) = §j and f(l;(\c)) = ¢”. So {y,c} € FE iff for each
q € I, if ¢ and p’ are compatible, then {z,h.(¢g)} € E. But p’ and b are twins for
U{Je: ¢ € Ag}, s0 dtp(z) = dt,p(z) = tpa(y, Ao)- 1

SUBLEMMA 4.4.2: There is a b € B* such that
(%) [{t € randty: |rl; ()| € w}| = wy.

Proof: Let G be a P-generic filter over V. Put

F= {th(yv AO): ye Vo Ao, I[y]G,Aol < w}'

Then |F| = wy, so we can write F = {t, : v < wy}. Fix sequences (p, : v < w1) C
G, (x, v <wi) Cw; and (y, : v <w;) C wy such that p,—“f(z,) = y,” and
tpG (¥, Ao) = t,. By Sublemma 4.4.1,

U randt, DO F.
beB*

But B* is countable, so we can find a b € B* satisfying (x) above. |

Fix b € B* with property (*). Consider the structure

N = (P[(BU B*), B, B*,{Jo, he: ¢ € Ay)).
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By CH, there is a ¥ < wy with N € N,.. Pick p € S; ~v. Since G, N, b€ N,, it
follows that dt, € N, C N,. By (%) and (ii), there is a

t €randt, N (N, N U Ne¢)

{<u
with |rl5(t)] < w. Then
t f(6) € Mo~ | N
{<p

Pick £ € w; with dty(z) = ¢t. Find p € G and y € V such that p < b and
pi—* f(.z') = y”. By Sublemma 4.4.1, there are p’ < p and ¥ € B* such that
p' and b are twins for B and dty(z) = tpg(y, do). But p < b, so dty(z) =
dty(z). Indeed, let ¢ € Ap and assume that dty (z)(c) = 1. Pick ¢ € J, which
is compatible with b’. By the definition of dty, it follows that {h.(¢),z} € E.
Since p’ and b’ are twins for B, so p’ and ¢ also have a common extension ¢’ in
P. But p' < p < b, so ¢ witnesses that b and g are compatible. Thus, by the
definition of dt;, we have dty(z)(c) = 1.

Thus tpe(y, Ag) = dty (x) = dty(z) = ¢. By (1), this implies that rank(y) = p.
But, by the construction of the partition (Vp, V), there are no y € V with
rank(y) = p. Contradiction, the lemma is proved. 1

LEMMA 4.5: Assume CH. If G € K}, then VC |=“ there is a partition (Vp, V1) of

wj so that for each stable c.c.c. poset P we have:

VP = “G is not isomorphic to G[Vi] fori € 2”. 7

Proof: Fix aset A € [wl]w witnessing G € K§ and a bijection f: A — w in
V. Let r: w — 2 be the characteristic function of a Cohen real from V. Take
A; = (for)1{i} for i < 2. Then (Ag, A;) is a partition of A. Using a trivial
density argument we can see that x Z¢ 4 y implies x #¢ 4, ¥ for i < 2 and for
T,y € wy N A. Thus V€ |= “Ag and A; witness G € K”. Applying Lemma 4.4
in V€ we get the desired partition of w;. |

LEMMA 4.6: In VP2 if G € Kq is quasi-smooth, then G € K.

Proof: Choose a set A € [wl]“J witnessing G € Ky and a bijection f: A — w.
Pick a < wy, a is even, with A, f, G € VP~ From now on we work in VF=. Let
{[z.)a,a: v < w1} be an enumeration of the equivalence classes of =g 4. Fix a
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partition (I, I;) of w; into uncountable pieces. Let r: w — 2 be the characteristic
function of a Cohen real from VF=*C, Take A; = (f or)~{i} for i < 2. Then
(Ao, A1) is a partition of A. Using a trivial density argument we can see that
z #Zag,4 y implies x #g, 4, y for i < 2 and for z,y € wy N A. For ¢ € 2 put

B; = A;U{z,sv e L}YU{[z,]e,a M} v € [1}.
Clearly (Bg, By) is a partition of w; and
B;n[z.],a, = BiN[z.]g,a = {z.}.
So G[B;) € K. But G is quasi-smooth, so G & G[B;] for some i € 2 in VFes.
Thus G € Kj is proved. |

4.2. G € K;. We say that a poset P has property Pr iff for each sequence
(p, : v <wy) C P there exist disjoint sets Uy, U; € [wl]w’ such that whenever
a € U and B € U; we have p,||pps.

LEMMA 4.7: C has property Pr.
Indeed, C has property K.
LEMMA 4.8: If T is an Aronszajn-tree, then Qr has property Pr.

Proof: Let (po:a <w;) C P be given. We can assume that there are a sta-
tionary set S C wq, p* € Qr, ¥* < wy, n € w and {z;: 1 < n} C T such that for
eacha €S

(a) z[a € dom(pa) for each z € dom(p,) with heighty(z) > a,

(b) pa[T<a =p*,

(c) ldom(pa) N Tal| = n,

(d) writing dom(pa) N Ta = {2§,...,2%_1}, § <on ‘- <on ZZ_,, the se-
quence (pa(z§),...,pa(z5_,)) is independent from a,
(e) ¥* < a and the elements z§[v*,...,z%_,[y* are pairwise distinct,

(f) z2[y* =2 fori < n.
For each 8 < w; and § = (Yo, ..., Yn-1) € (Tp)™ take

Sy ={a€ SN[ =y; for each i < n}.
Let

C*={ <> VB<dVge (Tp)" (IS5| Sw — S5 C o)}
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Now {ps: @ € SN C*} are wy members of P, so for some o < B € SN C*
the conditions p, and pg are compatible. Since p,(zf*) = p,@(wf ), zf and :cf
are incomparable in T for I < n. So for some v < a, z{{v # xf [v whenever
[ < n. On the other hand, for I # m < n we have z{*[v # 2 [v because
e[y = 2 # zm = 20,[v*. Take yf = z%[v and y} = xf[u for I < m and
write @ = (y&,...,¥3_1), b= (y§,...,y5_,) . The elements {y¢,y% i < n} are
pairwise different, so for each o’ € S; and 3’ € S3 the conditions p,s and pg: are
compatible. But [S;| = [S| = w1, because a € S5, 8 € S5, v < @ and a € C*.
n

A poset P is called well-met if any two compatible elements pg and p; of P
have a greatest lower bound denoted by pp A py.

LEMMA 4.9: Assume that the poset P has property Pr and VF |= “the poset
Q has property Pr”. Let {(pa,qa): @ < w1} C P * Q. Then there are disjoint
sets Uy, Uy € [wl]w’ such that for each v € Uy and é € Uy the conditions (p, g,)
and (ps,qs) are compatible, in other words, p, and ps have a common extension
Dv,s in P with py st—“qy |l@ gs”. If P is well-met, then we can find conditions
{py: @ € Uy WU} in P with p, < p, such that pl, A pgi—“g, |l gs” for each
v €Uy and 6 € Uy.

Proof: Let U be a P-name for the set U = {a: po € Gp}, where Gp is the
P-generic filter. Since P satisfies c.c.c., there is a p* € P with p*i—“|U| = w,”.
Since VP E “Q has property Pr”, there is a condition p < p* and there are P-

names such that pi— “V; = {&}: vy <w} € [U] “t forie 2, and gso and g, are

1

compatible whenever 7,6 € w;”. Choose conditions pfy < p and ordinals [32, jo

with p2—* &} = [ifr” for i < 2.

Now consider the sequence A = {pf‘y: vy < wy}. Since P has property Pr, there
are disjoint, uncountable sets Cp,C; C A such that p} and p; are compatible
whenever ¥ € Cy and & € C;. Take U; = {%: v € Cy} for i € 2. We can assume
that UyNU; = 0. Let v € Cg and § € C; and let p” be a common extension of
p% and p}. Then p"1r—39, 85 € U, that is, pge and pp are in Gp”, so p", must
be a common extension of Pge and pg!- So p” »—“53 € Vp and B} € V77, thus
p”u—“qgg and gg: are compatible in @7, so <p53,q[,2> lpeg <pﬂ§,q5é>.

Suppose that P is well-met. Take plﬁi’, =p5 A Ppo and p;a; =p; A Pgy- It works
because we can use p5 A p; as p” in the argument of the previous paragraph.
|
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LEMMA 4.10: If (Ry: o < g, Sg: 8 < u) is a finite support iteration such that
VRa =48, has property Pr” for a < p, then R, has property Pr, as well.

Proof: We prove this lemma by induction on x. The successor case is covered
by lemma 4.9. Assume that yu is limit. Let (ps : £ < wq) C R,. Without loss of
generality we can assume that (supp(p¢): £ < wy) forms a A-system with kernel
d. Fix v < p with d C v. By the induction hypothesis, the poset R, has
property Pr, so there exist disjoint sets Uy, U; € [wl]wl such that whenever
§ € Up and n € Uy we have p¢l|r,py. But pellr,p, implies p¢||r,p, because
supp(pe) Nsupp(p,) C v, so R, has property Pr, as well. [ |

The previous lemmas yield the following corollary.
LEMMA 4.11: F,, has property Pr.
Given G = {wy, E) € Ky and ¢, o, 8 € wy with £ € a N S take
D¢(a,B) = {v € & {a,v} € Eiff {B,v} ¢ E}.
LEMMA 4.12: If G € K4, then
(%) V€ € w1 Jeg(€) € wy Ya, B € wy N eg(€) IDE (o, B)] < w.
Proof: Since G € K1, we have an & € w; with |w; Nz]¢] < wi. Choose eg(€) €

w1 N € with wy N[z]e C eg(€). It works because a, 8 > ec(§) implies a, B € [z]e.
]

The bipartite graph (w; x 2, {{{r,0), (1, 1)}: v < p < wq}) will be denoted by
[wi; w].
LEMMA 4.13: If G € Ky, then neither G nor its complement may have a — not
necessarily spanned — subgraph isomorphic to [wy;w].

Proof: Let G = (w1, E). Write E(a) = {£ € wy: {{,a} € E}. Assume on the
contrary that A, B € [w;]"" are disjoint sets such that {@, 3} € E whenever a €
Aand 8 € B with a < 8. Without loss of generality we can assume that (A~ a+
1)Ne(a) = 0 for each a € A. Write A = {ag : £ <wi}. Then for £ € w; the set
F(&) = (ANag) ™ E(ag41) is finite because agt1 > €(ag) and (ANag) N E(8) = §
for all but countable many 3 € B. By Fodor’s lemma, we can assume that
F(§) = F for each £ € S, where S is a stationary subset of w; containing limit
ordinals only. Let T = {{ € §: F C a¢} and take W = {agy1: € € T}. Then
G[W] is an uncountable complete subgraph of G. Contradiction. |
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LEMMA 4.14: IfG € K; and V¢ |=“Q has property Pr”, then
VOQ = “G 2 GIf ' {i}] fori < 27,

where f:wy — 2 is the C-generic function over V.

Proof: Assume on the contrary that
(p,q) —"h: G = G[f~{0}]".

To simplify our notations, we will write E for E(G), D¢(a, 3) for D?(a, B) and
€(€) for €a(€).

Let Co = {§ < wy: € < 6 implies €(§) < é}. Clearly Cj is club. Take C; =
{6 <wi: (p,q)—*h"§ = f~1{0} N 4”}. Since C * Q satisfies c.c.c, the set C; is
club. Put Cy = Cy N Ch.

Now for each a < w; let 8, = min(C> \ a+1) and choose a condition (p,, go) <

(p,¢) and a countable ordinal v, such that

(Pas 4o} —“1(8a) = Fa”-

Since 4 > 8, > €(a) for each o € wy, we can fix a stationary set S C w; and
a finite set D such that D4(84,7a) = D for each a € S. Since C is well-met,
applying lemma 4.9 we can find disjoint uncountable subsets Sp,5; C S and a
sequence (pl,: & € So U S1) C C with pl, < pq such that p, Apsi— “qq [lq g5” for
each a € Sp and B € 5.

We can assume that the sets {dom(p,): « € So} and {dom(p}): 8 € S} form
A-systems with kernels dy and d;, respectively.

Take Y = {a € So: {¢,60} € E} and Y! = {a € S1: {§,6a} ¢ E} for £ < wi.
Write Y; = {£ < wi: |Yg| =wi}and Z; =w \Y; fori< 2.

By 4.13, the sets Z; are countable. Pick £ € Cy with DUdgUd; UZpUZ; C €&
Let ¢’ = min(Cy N €+ 1) and £’ = min(Cy ¢ + 1) . Since do U dy C € and
[Y2] = |Y| = w1, we can choose a; € Y¢ \¢" with dom(p,,) N[¢,¢’) = 0 for
i =0,1. The set W = D¢ (844, 6ay )N [€, &')is finite because 6a; > a; > " > €(¢')
for i < 2. Choose a C-name ¢ such that p, Apl, — “q is a common extension

of ¢a, and q,, in @” and take

r= <p:10 Upi!] U {(V’ ]‘): v E W}’q> ‘
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Since W N (dom(p,,, ) U dom(p}, )) = @, r is a condition.

Pick a condition ' < r from C x Q@ and an ordinal n such that r’u——“iz(f y=7".
Now 7 € [£, &) because &, ¢’ € C;. Since

P —“h(8a,) = Yo, h(€) = % and h is an isomorphism”,

50 {64p,¢&} € E and {b,,,€} ¢ E imply that {va,,7} € E and {ya,,7} ¢ E. But
Do, (60;s7a;) = D and D C € 50 {6ao,n} € E and {é4,,n} ¢ E, that is, n € W.
But ri—“ran(h) = f~1{0} and f~1{0} N W = @, contradiction. [ |

4.3 G € K. Given a non-trivial graph G = (V, E) with V € [wl]wl define
[(G)={6€wi:Fa €V a>éand [twing(a,V N )| < w}.

The following lemma obviously holds.

LEMMA 4.15: If Gy and G, are graphs on uncountable subsets of wy, Go = G,
then T'(Go) = I'(G1) mod NS, .

LEMMA 4.16: Given G € K~ Ko and S C w, there is a partition (Vy, V) of wy
such that ['(G[Vy]) € SmodNS,, and T'(G[V1]) C wy ~ SmodNS,, .

Proof: Let k be a large enough regular cardinal and fix an increasing, continuous
sequence (N, : v < w1) of countable, elementary submodels of H,, = (Hy, €) such
that G,S € No and (N,: v < p) € Ny for p < wy. Write v, = N, Nw; and
C ={v, :v<wi}. Take

Vo= U (ws1>7) and Vi=wi V= U (Vo1 > W)
ves vEwy N S
It is enough to prove that I'(G[Vp]) C S mod NS,,,. Assume that v, € T'(G[Vy]),
Y =V, a >, a € Vg and [twingyy)(a, v, N V)| = w. Since G, v, v, NV €
Not1 and |G/ =g,vyny, | < w, we have tpgg, (@ 1w N Vo) € Nyyyp and so
twinG[vo](a,'yL,) C Ny41 as well. Thus a € 7,41 N 7,. Hence a € Vg implies
~¥n = v € § which was to be proved. 1

LEMMA 4.17: If G € K~ Ky and T'(G) # OmodNS,,, then G is not quasi-
smooth.

Proof: Assume that S = I'(G) is stationary and let (So, S1) be a partition of S
into stationary subsets. By Lemma 4.16, there is a partition (Vp, Vi) of w; with
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L(G([Vi))n S C S;. Then G[V;] and G can not be isomorphic by Lemma 4.15.
|

Let us remark that G € Ky iff G € X\ Ky and there is an A € [wl]w and
T € w1 ™ A such that |[z]g 4] = |w1 NMz]e,a] = ws.

Given G € Ko we will write G € K4 iff there are two disjoint, countable subsets
of wy, Ag and Aj, and there is an z € wy, such that |[z]¢ 4.} = w1 Nzle,4,] = w1
and [z]g,.4, ™ A1 = [2]g,4, > Ao.

LEMMaA 4.18: If G € K, then G € (K))V°.

Proof: Assume that A € [wl]w and z € wy witness G € K3 in the ground model.
Fix a bijection f: A — w in V. Let r: w — 2 be the characteristic function of a
Cohen real from V€. Take A; = (f or)~!{i}. By a simple density argument, we
can see that [z]g .4, = [#]g,a = [*]c,4,- Thus Ag, A; and z show that g € Kj.
|

LEMMA 4.19: Assume that every Aronszajn tree is special. If G € K}, then
there is a partition (Vo, V1) of wy such that T'(G[V;]) is stationary for i < 2.

Proof: Choose Ag, A; and z witnessing G € K. Let A = Ay U A4;. Take
Co = [t]g,4, N A4, C1 = (w1 N[z]g,4,) N A and consider the partition trees 7;
of G[Cy] for ¢ € 2 (see Definition 2.3). These trees are Aronszajn-trees because
G is non-trivial. Fix functions h;: C; — w specializing 7;. We can find natural
numbers ng and n; such that the sets S; = {v: b7 {n;}N(T;), # 0} are stationary,
that is, h;'{n;} meets stationary many levels of 7;. Take B; = h;'{n;} and
Y; ={ce€ Ci:3b € B; ¢ <7, b}.

Pick any 6 € S;. Let b € BN (T)s. I c € Y;~(T})cs, ¢ # b, then c[§ #
b by the construction of Y;. So tpggy,(c,(%)<s) = tPaary, (c[6: (Ti)<s) #
tPGa[y; (b (7i)<s) by the definition of the partition tree. This means that

twingy;) (b, (%i)<s) = {b}.

Thus § € T(G[Y;)) provided (T;)<s C 6 and b > 6. But these requirements
exclude only a non-stationary subset of S;. So I'(G[Y;]) D S; modNS,,.

Let V; = Y; U A; U (C1—; NY1_;) for i € 2 and consider the partition (Vp, V1)
of wi . If z € V;N(Y; U A;), then tpg(z, 4;) # tpa(b, A;) for any b € B; because
Co C [z]g,4, and Cy C wy Nz]g,4,. So T(G[Vi]) O SimodNS,,, holds. |
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Now we are ready to conclude the proof of Theorem 4.1. We will work in VP2
Assume that G € K. We must show that G is not quasi-smooth.

Pick a v < wo with G € (K)V"™ and Q,, = C. Assume first that G € (Ko)V™ . 1t
G were quasi-smooth in V2, G € (K§)F~2 would hold by Lemma 4.6. So we can
assume that G € (K§)F~. Since P,, is a stable, c.c.c. poset, so is P,,/P,41. So,
by Lemma 4.5, there is a partition (Vp, V}) of wy in VFP++ such that VP2 =4G
is not isomorphic to G[V;] for i < 2”.

Assume that G € (ICI)VP". Since P,, has property Pr, so is P,,/P,4+1. Thus,
by Lemma 4.14, the partition (Vp, V1) of w; given by the @, -generic Cohen reals
in VFPe+1 has the property that VP2 |=“G is not isomorphic to G[V;] for i < 2.

Finally assume that G € (K3)V *. By Lemma 4.18, we have G € (Kj)V™***.
Since P, satisfies c.c.c, it follows that G € (KJ'Z)VP“?. So applying Lemma 4.19
we can find a partition (Vp, V1) of wy such that both I'(G[Vp]) and T'(G[V;]) are
stationary. Thus, by Lemma 4.17, neither G[V;] nor G[V;] are quasi-smooth. So
G itself can not be quasi-smooth. ]
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